The effect of ferredoxin(BED) overexpression on benzene dioxygenase activity in Pseudomonas putida ML2.

نویسندگان

  • H M Tan
  • C L Joannou
  • C E Cooper
  • C S Butler
  • R Cammack
  • J R Mason
چکیده

The benzene dioxygenase from Pseudomonas putida ML2 is a multicomponent complex comprising a flavoprotein reductase, a ferredoxin, and a terminal iron-sulfur protein (ISP). The catalytic activity of the isolated complex shows a nonlinear relationship with protein concentration in cell extracts, with the limiting factor for activity in vitro being ferredoxin(BED). The relative levels of the three components were analyzed by using 125I-labelled antibodies, and the functional molar ratio of ISP(BED), ferredoxin(BED), and reductase(BED) was shown to be 1:0.9:0.8, respectively. The concentration of ferredoxin(BED) was confirmed by quantitative electron paramagnetic resonance spectroscopy of the 2Fe-2S centers in ferredoxin(BED) and ISP(BED) of whole cells. These results demonstrate that the ferredoxin(BED) component is a limiting factor in dioxygenase activity in vitro. To determine if it is a limiting factor in vivo, a plasmid (pJRM606) overproducing ferredoxin(BED) was introduced into P. putida ML2. The benzene dioxygenase activity of this strain, measured in cell extracts, was fivefold greater than in the wild type, and the activity was linear with protein concentration in cell extracts above 2 mg/ml. Western blotting (immunoblotting) and electron paramagnetic resonance spectroscopic analysis confirmed an elevated level of ferredoxin(BED) protein and active redox centers in the recombinant strain. However, in these cells, the increased level of ferredoxin(BED) had no effect on the overall rate of benzene oxidation by whole cells. Thus, we conclude that ferredoxin(BED) is not limiting at the high intracellular concentration (0.48 mM) found in cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primary structure of protein B from Pseudomonas putida, member of a new class of 2Fe-2S ferredoxins.

The primary structure of the 2Fe-2S ferredoxin (protein B) from the benzene dioxygenase system of Pseudomonas putida strain NCIB 12190 was determined by gas-phase sequencing of the protein and its fragments. Fast atom bombardment mass spectrometry indicated a molecular mass of 11,860 Da. The sequence contained five cysteine residues, four of which would be required to coordinate the iron-sulphu...

متن کامل

Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli.

The nucleotide sequence of the todC1C2BADE genes which encode the first three enzymes in the catabolism of toluene by Pseudomonas putida F1 was determined. The genes encode the three components of the toluene dioxygenase enzyme system: reductaseTOL (todA), ferredoxinTOL (todB), and the two subunits of the terminal dioxygenase (todC1C2); (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3,5-diene deh...

متن کامل

Efficient degradation of trichloroethylene by a hybrid aromatic ring dioxygenase.

Engineering of hybrid gene clusters between the toluene metabolic tod operon and the biphenyl metabolic bph operon greatly enhanced the rate of biodegradation of trichloroethylene. Escherichia coli cells carrying a hybrid gene cluster composed of todC1 (the gene encoding the large subunit of toluene terminal dioxygenase in Pseudomonas putida F1), bphA2 (the gene encoding the small subunit of bi...

متن کامل

Biotransformation of Chloroaromatics: the Impact of Bioavailability and Substrate Specificity

The effect of surfactants on the biodegradation of mono-aromatic hydrocarbons such as benzene, chlorobenzene and 1,2-dichlorobenzene by an Escherichia coli JMI09(MI) recombinant strain, carrying a gene cluster containing the genes for benzene dioxygenase, cis-benzene dihydrodiol dehydrogenase, and catechol 2,3-dioxygenase from Pseudomonas putida ML2, has been investigated. We observed that the ...

متن کامل

Combination of the tod and the tol pathways in redesigning a metabolic route of Pseudomonas putida for the mineralization of a benzene, toluene, and p-xylene mixture.

Construction of a hybrid strain which is capable of mineralizing components of a benzene, toluene, and p-xylene mixture simultaneously was attempted by redesigning the metabolic pathway of Pseudomonas putida. Genetic and biochemical analyses of the tod and the tol pathways revealed that dihydrodiols formed from benzene, toluene, and p-xylene by toluene dioxygenase in the tod pathway could be ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 176 9  شماره 

صفحات  -

تاریخ انتشار 1994